Конспект урока на тему " Тождества. Тождественные преобразования выражений "

Наряду с изучением операций и их свойств в алгебре изучают такие понятия, как выражение, уравнение, неравенство . Первоначальное зна­комство с ними происходит в начальном курсе математики. Вводятся они, как правило, без строгих определений, чаще всего остенсивно, что требует от учителя не только большой аккуратности в употреблении терминов, обозначающих эти понятия, но и знания ряда их свойств. Поэтому главная задача, которую мы ставим, приступая к изучению материала данного параграфа, - это уточнить и углубить знания о вы­ражениях (числовых и с переменными), числовых равенствах и число­вых неравенствах, уравнениях и неравенствах.

Изучение данных понятий связано с использованием математиче­ского языка, он относится к искусственным языкам, которые создаются, и развиваются вместе с той или иной наукой. Как и любой другой математический язык имеет свой алфавит. В нашем курсе он буде представлен частично, в связи с необходимостью больше внимания уделить взаимосвязи алгебры с арифметикой. В этот алфавит входят:

1) цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9; с их помощью по специальным правилам записываются числа;

2) знаки операций +, -, , :;

3) знаки отношений <, >, =, M;

4) строчные буквы латинского алфавита, их применяют для обо значения чисел;

5) скобки (круглые, фигурные и др.), их называют техническими знаками.

Используя этот алфавит, в алгебре образуют слова, называя их выражениями, а из слов получаются предложения - числовые равенства, числовые неравенства, уравнения, неравенства с переменными.

Как известно, записи 3 + 7, 24: 8, 3 × 2 - 4, (25 + 3)× 2 -17 называются числовыми выражениями. Они образуются из чисел, знаков действий, скобок. Если выполнить все действия, указанные в выражении, получим число, которое называется значением числового выражения . Так, значение числового выражения 3 × 2 - 4 равно 2.

Существуют числовые выражения, значения которых нельзя найти. Про такие выражения говорят, что они не имеют смысла .

Например , выражение 8: (4 - 4) смысла не имеет, поскольку его значение найти нельзя: 4 - 4 = 0, а деление на нуль невозможно. Не имеет смысла и выражение 7-9, если рассматривать его на множестве натуральных чисел, так как на этом множестве значения выражения 7-9 найти нельзя.

Рассмотрим запись 2а + 3. Она образована из чисел, знаков действий и буквы а. Если вместо а подставлять числа, то будут получаться различные числовые выражения:

если а = 7, то 2× 7 + 3;

если а = 0, то 2× 0 + 3;

если а = - 4, то 2× (- 4) + 3.

В записи 2а + 3 такая буква а называется переменной , а сама запись 2а + 3 - выражением с переменной.


Переменную в математике, как правило, обозначают любой строчной буквой латинского алфавита. В начальной школе для обозначения переменной кроме букв используются другие знаки, например œ. Тогда запись выражения с переменной имеет вид: 2ל + 3.

Каждому выражению с переменной соответствует множество чисел, при подстановке которых получается числовое выражение, имеющее смысл. Это множество называют областью определения выражения .

Например, область определения выражения 5: (х - 7) состоит из всех действительных чисел, кроме числа 7, так как при х = 7 выражение 5: (7 - 7) смысла не имеет.

В математике рассматривают выражения, содержащие одну, две и больше переменных.

Например, 2а + 3 - это выражение с одной пере­менной, а (3х + 8у)× 2 - это выражение с тремя переменными. Чтобы из выражения с тремя переменными получить числовое выражение, надо вместо каждой переменной подставить числа, принадлежащие области определения выражения.

Итак, мы выяснили, как образуются из алфавита математического языка числовые выражения и выражения с переменными. Если провести аналогию с русским языком, то выражения - это слова математического языка.

Но, используя алфавит математического языка, можно образовать и такие, например, записи: (3 + 2)) - × 12 или 3х – у: +)8, которые нельзя назвать ни числовым выражением, ни выражением с переменной. Эти примеры свидетельствуют о том, что описание - из каких знаков алфавита математического языка образуются выражения числовые и с переменными, не является определением этих понятий. Дадим определение числового выражения (выражение с переменными определяется аналогично).

Определение. Если f и q - числовые выражения, то (f) + (q), (f) - (q), (f) × (q), (f) (q)- числовые выражения. Считают, что каждое чис­ло является числовым выражением.

Если точно следовать этому определению, то пришлось бы писать слишком много скобок, например, (7) + (5) или (6): (2). Для сокращения записи условились не писать скобки, если несколько выражений скла­дываются или вычитаются, причем эти операции выполняются слева направо. Точно так же не пишут скобок и тогда, когда перемножаются или делятся несколько чисел, причем эти операции выполняются по порядку слева направо.

Например , пишут так: 37 – 12 + 62 - 17+13 или 120:15-7:12.

Кроме того, условились сначала выполнять действия второй ступени (умножение и деление), а затем действия первой ступени (сложение и вычитание). Поэтому выражение (12-4:3) + (5-8:2-7) записывают так: 12 – 4: 3 + 5 – 8: 2 - 7.

Задача. Найти значение выражения 3х (х - 2) + 4(х - 2) при х = 6.

Решение

1 способ. Подставим число 6 вместо переменной в данное выра­жение: 3 × 6-(6 - 2) + 4×(6 - 2). Чтобы найти значение полученного чи­слового выражения, выполним все указанные действия: 3×6× (6 - 2) + 4× (6-2)= 18× 4 + 4 × 4 = 72 + 16 = 88. Следовательно, при х = 6 значение выражения Зх (х- 2) + 4(х-2) равно 88.

2 способ. Прежде чем подставлять число 6 в данное выражение, упростим его: Зх (х - 2) + 4(х - 2) = (х - 2)(3х + 4). И затем, подставив в полученное выражение вместо х число 6, выполним действия: (6 - 2) × (3×6 + 4) = 4× (18 + 4) = 4×22 = 88.

Обратим внимание на следующее: и при первом способе решения задачи, и при втором мы одно выражение заменяли другим.

Например , выражение 18×4 + 4×4 заменяли выражением 72+16, а выражение Зх (х - 2) + 4(х - 2) - выражением (х - 2)(3х + 4), причем эти замены привели к одному и тому же результату. В математике, описывая решение данной задачи, говорят, что мы выполняли тождественные преобразования выражений.

Определение. Два выражения называются тождественно равными, если при любых значениях переменных из области определения выражений их соответственные значения равны.

Примером тождественно равных выражений могут служить выражения 5(х + 2) и + 10, поскольку при любых действительных значениях х их значения равны.

Если два тождественно равных на некотором множестве выражения соединить знаком равенства, то получим предложение, которое называют тождеством на этом множестве.

Например , 5(х + 2) = 5х + 10 - тождество на множестве действительных чисел, потому что для всех действительных чисел значения выражения 5(х + 2) и 5х + 10 совпадают. Используя обозначение квантора общности, это тождество можно записать так: (" х Î R) 5(х + 2) = 5х + 10. Тождествами считают и верные числовые равенства.

Замена выражения другим, тождественно равным ему на некотором множестве, называется тождественным преобразованием данного выражения на этом множестве.

Так, заменив выражение 5(х + 2) на тождественно равное ему выражение 5х + 10, мы выполнили тождественное преобразование первого выражения. Но как, имея два выражения, узнать, являются они тождественно равными или не являются? Находить соответствующие значения выражений, подставляя конкретные числа вместо переменных? Долго и не всегда возможно. Но тогда каковы те правила, которыми надо руководствоваться, выполняя тождественные преобразования выражений? Этих правил много, среди них - свойства алгебраических операций.

Задача. Разложить на множители выражение ах - bх + аb - b 2 .

Решение. Сгруппируем члены данного выражения по два (первый со вторым, третий с четвертым): ах - bх+ аb - b 2 = (ах-bх)+(аb-b 2). Это преобразование возможно на основании свойства ассоциативности сложения действительных чисел.

Вынесем в полученном выражении из каждой скобки общий множитель: (ах - bх) + (аb - b 2) = х(а -b) + b(а - b) - это преобразование возможно на основании свойства дистрибутивности умножения отно­сительно вычитания действительных чисел.

В полученном выражении слагаемые имеют общий множитель, вынесем его за скобки: х(а - b) + b(а - b) = (а - b)(х -b). Основой вы­полненного преобразования является свойство дистрибутивности ум­ножения относительно сложения.

Итак, ах - bх + аb - b 2 = (а - b)(х -b) .

В начальном курсе математики выполняют, как правило, только тождественные преобразования числовых выражений. Теоретической основой таких преобразований являются свойства сложения и умножения, различные правила: прибавления суммы к числу, числа к сумме, вычитания числа из суммы и др.

Например , чтобы найти произведение 35 × 4, надо выполнить преобразования: 35 × 4 = (30 + 5) × 4 = 30 × 4 + 5 × 4 = 120 + 20 = 140. В основе выполненных преобразований лежат: свой­ство дистрибутивности умножения относительно сложения; принцип записи чисел в десятичной системе счисления (35 = 30 + 5); правила умножения и сложения натуральных чисел.

Обе части которого являются тождественно равными выражениями. Тождества делятся на буквенные и числовые.

Тождественные выражения

Два алгебраических выражения называются тождественными (или тождественно равными ), если при любых численных значениях букв они имеют одинаковую численную величину. Таковы, например, выражения:

x (5 + x ) и 5x + x 2

Оба представленных выражения, при любом значении x будут равны друг другу, поэтому их можно назвать тождественными или тождественно равными.

Так же тождественными можно назвать и числовые выражения, равные между собой. Например:

20 - 8 и 10 + 2

Буквенные и числовые тождества

Буквенное тождество - это равенство, которое справедливо при любых значениях входящих в него букв. Другими словами, такое равенство, у которого обе части являются тождественно равными выражениями, например:

(a + b )m = am + bm
(a + b ) 2 = a 2 + 2ab + b 2

Числовое тождество - это равенство, содержащее только числа, выраженные цифрами, у которого обе части имеют одинаковую численную величину. Например:

4 + 5 + 2 = 3 + 8
5 · (4 + 6) = 50

Тождественные преобразования выражений

Все алгебраические действия представляют собой преобразование одного алгебраического выражения в другое, тождественное первому.

При вычислении значения выражения, раскрытии скобок, вынесении общего множителя за скобки и в ряде других случаев одни выражения заменяются другими, тождественно равными им. Замену одного выражения другим, тождественно равным ему, называют тождественным преобразованием выражения или просто преобразованием выражения . Все преобразования выражений выполняются на основе свойств действий над числами.

Рассмотрим тождественное преобразование выражения на примере вынесения общего множителя за скобки:

10x - 7x + 3x = (10 - 7 + 3)x = 6x

Числа и выражения, из которых составлено исходное выражение, можно заменять тождественно равными им выражениями. Такое преобразование исходного выражения приводит к тождественно равному ему выражению.

Например, в выражении 3+x число 3 можно заменить суммой 1+2 , при этом получится выражение (1+2)+x , которое тождественно равно исходному выражению. Другой пример: в выражении 1+a 5 степень a 5 можно заменить тождественно равным ей произведением, например, вида a·a 4 . Это нам даст выражение 1+a·a 4 .

Данное преобразование, несомненно, искусственно, и обычно является подготовкой к каким-либо дальнейшим преобразованиям. Например, в сумме 4·x 3 +2·x 2 , учитывая свойства степени, слагаемое 4·x 3 можно представить в виде произведения 2·x 2 ·2·x . После такого преобразования исходное выражение примет вид 2·x 2 ·2·x+2·x 2 . Очевидно, слагаемые в полученной сумме имеют общий множитель 2·x 2 , таким образом, мы можем выполнить следующее преобразование - вынесение за скобки. После него мы придем к выражению: 2·x 2 ·(2·x+1) .

Прибавление и вычитание одного и того же числа

Другим искусственным преобразованием выражения является прибавление и одновременное вычитание одного и того же числа или выражения. Такое преобразование является тождественным, так как оно, по сути, эквивалентно прибавлению нуля, а прибавление нуля не меняет значения.

Рассмотрим пример. Возьмем выражение x 2 +2·x . Если к нему прибавить единицу и отнять единицу, то это позволит в дальнейшем выполнить еще одно тождественное преобразование - выделить квадрат двучлена : x 2 +2·x=x 2 +2·x+1−1=(x+1) 2 −1 .

Список литературы.

  • Алгебра: учеб. для 7 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 17-е изд. - М. : Просвещение, 2008. - 240 с. : ил. - ISBN 978-5-09-019315-3.
  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Мордкович А. Г. Алгебра. 7 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 17-е изд., доп. - М.: Мнемозина, 2013. - 175 с.: ил. ISBN 978-5-346-02432-3.

Итак, друзья, в прошлом уроке мы познакомились с Поняли, что означают слова "выражение не имеет смысла" . А теперь пришла пора разобраться, что же такое преобразование выражений. И самое главное – зачем оно нужно.

Что такое преобразование выражения?

Ответ прост, до неприличия.) Это любое действие с выражением. И всё. Все эти преобразования вы делали с первого класса. Любое не буквально, конечно… Об этом чуть ниже будет.)

Например, возьмём какое-нибудь суперкрутое числовое выражение Скажем, 3+2. Как его можно преобразовать? Да очень просто! Хотя бы взять да посчитать:

3+2 = 5

Вот этот расчёт детского садика и будет преобразованием выражения. Можно записать то же самое выражение по-другому:

3+2 = 2+3

А тут мы вообще ничего не считали. Просто взяли и переписали наше выражение в другом виде. Это тоже будет преобразованием выражения. Можно записать и по-другому. Например, вот так:

3+2 = 10-5

И эта запись – тоже преобразование выражения.

Или так:

3+2 = 10:2

Тоже преобразование выражения!

Если мы с вами постарше, с алгеброй дружим, то напишем:

Кто на "ты" с алгеброй, тот, даже особо не напрягаясь и ничего не считая, в уме сообразит, что слева и справа стоит обыкновенная пятёрка. Напрягитесь и попробуйте.)

А если мы совсем уж старшенькие, то можем записать и такие ужастики:

log 2 8+ log 2 4 = log 2 32

Или даже такие:

5 sin 2 x +5 cos 2 x =5 tgx·ctgx

Внушает? И таких преобразований, очевидно, можно понаделать сколько хочешь! Насколько позволяет фантазия. И набор знаний математики.)

Уловили смысл?

Любое действие над выражением, любая запись его в другом виде называется преобразованием выражения. И все дела. Всё очень просто.

Простота, конечно, дело всегда хорошее и приятное, но за любую простоту где-то надо платить, да…. Есть здесь одно существенное "но". Все эти загадочные превращения всегда подчиняются одному оч-чень важному правилу. Правило это настолько важное, что его смело можно назвать главным правилом всей математики. И нарушение этого простого правила неизбежно будет приводить к ошибкам. Вникаем?)

Предположим, мы преобразовали наше выражение как попало, от балды, как-нибудь вот так:

3+2 = 6+1

Преобразование? Конечно. Мы же записали выражение в другом виде! Но… что здесь не так?

Ответ: всё не так.) Дело всё в том, что преобразования "как попало и от балды" математику не интересуют вообще.) Почему? Потому, что вся математика построена на преобразованиях, в которых меняется внешний вид, но суть выражения не меняется. Таково её жёсткое требование. И нарушение этого требования будет приводить к ошибкам. Три плюс два можно записать в каком угодно виде. В каком пример требует, в том виде и запишем. Но по своей сути это всегда должно быть пять. В каком бы виде мы эти самые 3+2 ни записали. А вот, если, вдруг, после записи выражения 3+2 в другом виде, у вас вместо пяти окажется двадцать пять, где-то вы ошиблись по дороге. Вернитесь да ляп-то и устраните.)

А теперь пришла пора мудрых зелёных мыслей.)

Запоминаем:

1. Любое действие над выражением, запись его в другом виде, называется преобразованием выражения.

2. Преобразования, не меняющие сути выражения , называются тождественными.

3. Вся математика построена на тождественных преобразованиях выражений.

Именно тождественные преобразования и позволяют нам, шаг за шагом, потихоньку-помаленьку, превращать сложный пример в простое, белое и пушистое выражение, сохраняя суть примера. Если, вдруг, в цепочке наших преобразований мы где-то ошибёмся, и на каком-то шаге сделаем НЕ ТОЖДЕСТВЕННОЕ преобразование, то дальше мы будем решать уже совсем другой пример. С другими ответами, да… Которые уже не будут иметь никакого отношения к правильным.) Нарушим тождественность и накосячим ещё где-то - приступим к решению уже третьего примера. И так далее, в зависимости от количества косяков, от задачки про поезд и автомобиль можно прийти к задачке про полтора землекопа.)

Ещё пример. Для школьников, уже вовсю изучающих алгебру. Допустим, нам надо найти значение выражения (40+7) 2 . Как можно выкрутиться, т.е. преобразовать наше злое выражение? Можно просто посчитать выражение в скобках (получим 47), перемножить столбиком само на себя и получить (если сосчитать) 2209. А можно воспользоваться формулой

(a+b) 2 = a 2 +2ab+b 2 .

Получим: (40+7) 2 = 40 2 +2∙40∙7+7 2 = 1600+560+49 = 2209.

Но! Есть соблазн (скажем, в силу незнания формулы) при возведении в квадрат записать просто:

(40+7) 2 = 40 2 +7 2 .

К сожалению, на данном простом и, казалось бы, очевидном переходе, тождественность наших преобразований нарушается . Слева всё как надо, 2209, а вот справа – уже другое число. 1649. Посчитайте – и всё станет понятно. Вот вам типичный пример НЕ тождественного преобразования. И соответственно вылезшей ошибки. )

Вот оно и главное правило решения любых заданий: соблюдение тождественности преобразований.

Пример с числовыми выражениями 3+2 и (40+7) 2 я привёл чисто для наглядности.

А что же с алгебраическими выражениями? Всё то же самое! Только в алгебраических выражениях тождественные преобразования задаются формулами и правилами. Скажем, в алгебре есть формула:

a(b-c) = ab - ac

Значит, в любом примере мы имеем полное право вместо выражения a(b-c) смело написать альтернативное выражение ab - ac . И наоборот. Это Математика предоставляет нам на выбор эти два выражения. А уж какое из них писать - от конкретного примера зависит.

Или популярное:

a 2 - b 2 = (a - b )(a + b )

Опять же, два возможных варианта. Оба правильные.) Это тоже тождественное преобразование. Что выгоднее писать – разность квадратов или же произведение скобок – пример сам подскажет.)

Ещё пример. Одно из самых главных и нужных преобразований в математике - это основное свойство дроби. Подробнее можно (будет) по ссылочке почитать и посмотреть (когда урок сделаю), а здесь я просто напомню правило:

Если числитель и знаменатель дроби умножить (разделить) на одно и то же число, или неравное нулю выражение, дробь не изменится.

Вот вам пример тождественных преобразований по этому свойству:

Как вы, наверняка, догадались, эту славную цепочку можно продолжать до бесконечности...) Насколько хватит творческого порыва. Всякие там минусы, корни, пусть вас не смущают. Это всё одна и та же дробь. По своей сути. Две трети. 2/3. Просто записанная в разном виде. :) Очень важное свойство. Именно оно очень часто позволяет превращать всякие монстры-примеры в белые и пушистые.)

Конечно же, формул и правил, задающих тождественные преобразования, - много. Я бы даже сказал, очень много. Но самых главных, без которых в математике хотя бы троечного уровня обойтись нельзя , - вполне разумное количество.

Вот одни из базовых преобразований:

1. Работа с одночленами и многочленами. Приведение подобных слагаемых (или коротко – подобных);

2. Раскрытие скобок и заключение в скобки ;

3. Разложение на множители ;

4. и разложение квадратного трёхчлена .

5. Работа с дробями и дробными выражениями.

Эти пять базовых преобразований широко используются во всей математике . От элементарной до высшей. И, если вы не владеете хотя бы одной из этих пяти простых вещей, то вас неминуемо ждут большие проблемы как во всей математике средней школы, так и в старших классах, а уж в ВУЗе – тем более. Поэтому именно с них и начнём. В следующих уроках этого раздела.)

Есть и более крутые преобразования. Для продвинутых школьников и студентов.) Будь то:

6. , и всё что с ними связано;

7. Выделение полного квадрата из квадратного трёхчлена;

8. Деление многочленов уголком или по схеме Горнера ;

9. Разложение рациональной дроби в сумму элементарных (простейших) дробей. Полезнейшая фишка для студентов при работе

Итак, всё ясно насчёт тождественности преобразований и важности её соблюдения? Отлично! Тогда пора двигаться на следующий уровень и шагать из примитивной арифметики в более серьёзную алгебру окончательно. И с блеском в глазах.)

Пусть даны два алгебраических выражения:

Составим таблицу значений каждого из этих выражений при различных числовых значениях буквы х.

Мы видим, что при всех тех значениях, которые давались букве х, значения обоих выражений оказывались равными. То же будет и при всяком другом значении х.

Чтобы убедиться в этом, преобразуем первое выражение. На основании распределительного закона запишем:

Произведя над числами указанные действия, получим:

Итак, первое выражение после его упрощения оказалось совершенно таким же, как и второе выражение.

Теперь ясно, что при любом значении х значения обоих выражений равны.

Выражения, значения которых равны при любых значениях входящих в них букв, называются тождественно равными или тождественными.

Значит, - тождественные выражения.

Сделаем одно важное замечание. Возьмём выражения:

Составив таблицу, подобную предыдущей, убедимся, что оба выражения при любом значении х, кроме имеют равные числовые значения. Только при второе выражение равно 6, а первое теряет смысл, так как в знаменателе получается нуль. (Вспомним, что на нуль делить нельзя.) Можно ли сказать, что эти выражения тождественны?

Мы раньше условились, что каждое выражение будем рассматривать только при допустимых значениях букв, то есть при тех значениях, при которых выражение не теряет смысла. Значит, и здесь, сравнивая два выражения, принимаем во внимание только те значения букв, которые допустимы для обоих выражений. Поэтому значение мы должны исключить. А так как при всех остальных значениях х оба выражения имеют одно и то же числовое значение, то мы вправе считать их тождественными.

На основании сказанного дадим такое определение тождественных выражений:

1. Выражения называются тождественными, если они имеют одинаковые числовые значения при всех допустимых значениях входящих в них букв.

Если два тождественных выражения соединим знаком равенства, то получим тождество. Значит:

2. Тождеством называется равенство, верное при всех допустимых значениях входящих в него букв.

Мы уже раньше встречались с тождествами. Так, например, тождествами являются все равенства, которыми мы выражали основные законы сложения и умножения.

Например, равенства, выражающие переместительный закон сложения

и сочетательный закон умножения

справедливы для любых значений букв. Значит, эти равенства являются тождествами.

Тождествами считаются также все верные арифметические равенства, например:

В алгебре часто приходится какое-либо выражение заменять другим, ему тождественным. Пусть, например, требуется найти значение выражения

Мы значительно облегчим вычисления, если данное выражение заменим выражением, ему тождественным. На основании распределительного закона можем записать:

Но числа в скобках дают в сумме 100. Значит, имеем тождество:

Подставив в правую часть его 6,53 вместо а, сразу (в уме) найдём числовую величину (653) данного выражения.

Замена одного выражения другим, тождественным ему, называется тождественным преобразованием этого выражения.

Напомним, что всякое алгебраическое выражение при любых допустимых значениях букв является некоторым

числом. Отсюда следует, что к алгебраическим выражениям применимы все законы и свойства арифметических действий, которые были приведены в предыдущей главе. Итак, применение законов и свойств арифметических действий преобразует данное алгебраическое выражение в тождественное ему выражение.